The weak Bernoulli property for matrix Gibbs states

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Gibbs property and systems of numeration

Weak Gibbs property and systems of numeration parÉric OLIVIER et Alain THOMAS Résumé. Nousétudions les propriétés d'autosimilarité et la nature gibbsienne de certaines mesures definies sur l'espace produit Ω r := {0, 1,. .. , r−1} N. Cet espace peutêtre identifiéà l'intervalle [0, 1] au moyen de la numération en base r. Le dernier paragraphe concerne la convolution de Bernoulli en base β = 1+ √...

متن کامل

Bernoulli matrix approach for matrix differential models of first-order

The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...

متن کامل

On the Gibbs properties of Bernoulli convolutions

We consider infinitely convolved Bernoulli measures (or simply Bernoulli convolutions) related to the β-numeration. A matrix decomposition of these measures is obtained in the case when β is a PV number. We also determine their Gibbs properties for β being a multinacci number, which makes the multifractal analysis of the corresponding Bernoulli convolution possible.

متن کامل

Multifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions

For a given expanding d-fold covering transformation of the one-dimensional torus, the notion of weak Gibbs measure is defined by a natural generalization of the classical Gibbs property. For these measures, we prove that the singularity spectrum and the L -spectrum form a Legendre transform pair. The main difficulty comes from the possible existence of first-order phase transition points, that...

متن کامل

bernoulli matrix approach for matrix differential models of first-order

the current paper contributes a novel framework for solving a class of linear matrix differential equations. to do so, the operational matrix of the derivative based on the shifted bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. an error estimation of presented method is provided. numerical experiments are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2018

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2018.129