The weak Bernoulli property for matrix Gibbs states
نویسندگان
چکیده
منابع مشابه
Weak Gibbs property and systems of numeration
Weak Gibbs property and systems of numeration parÉric OLIVIER et Alain THOMAS Résumé. Nousétudions les propriétés d'autosimilarité et la nature gibbsienne de certaines mesures definies sur l'espace produit Ω r := {0, 1,. .. , r−1} N. Cet espace peutêtre identifiéà l'intervalle [0, 1] au moyen de la numération en base r. Le dernier paragraphe concerne la convolution de Bernoulli en base β = 1+ √...
متن کاملBernoulli matrix approach for matrix differential models of first-order
The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...
متن کاملOn the Gibbs properties of Bernoulli convolutions
We consider infinitely convolved Bernoulli measures (or simply Bernoulli convolutions) related to the β-numeration. A matrix decomposition of these measures is obtained in the case when β is a PV number. We also determine their Gibbs properties for β being a multinacci number, which makes the multifractal analysis of the corresponding Bernoulli convolution possible.
متن کاملMultifractal analysis of weak Gibbs measures and phase transition—application to some Bernoulli convolutions
For a given expanding d-fold covering transformation of the one-dimensional torus, the notion of weak Gibbs measure is defined by a natural generalization of the classical Gibbs property. For these measures, we prove that the singularity spectrum and the L -spectrum form a Legendre transform pair. The main difficulty comes from the possible existence of first-order phase transition points, that...
متن کاملbernoulli matrix approach for matrix differential models of first-order
the current paper contributes a novel framework for solving a class of linear matrix differential equations. to do so, the operational matrix of the derivative based on the shifted bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. an error estimation of presented method is provided. numerical experiments are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2018
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2018.129